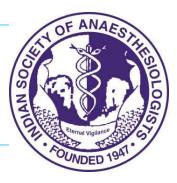
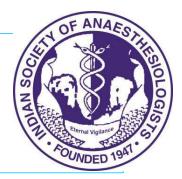

INDIAN SOCIETY OF ANAESTHESIOLOGISTS (ISA) MECHANICAL VENTILATION MODULE (BASIC)

Orientation Course for Clinical Specialists & Refresher Course for Anaesthesiologists


BASICS OF MECHANICAL VENTILATION

Simple Positive Pressure Mechanical Ventilator



Basic Anatomy of Airway

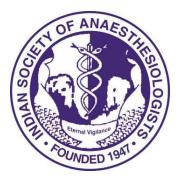
- Upper Airway
 - humidifies inhaled gases
 - site of most resistance to airflow
- Lower Airway
 - conducting airways (anatomic dead space)
 - respiratory bronchioles and alveoli (gas exchange)

Basic Physiology

- Negative pressure circuit
 - Gradient between mouth and pleural space is driving pressure
 - need to overcome resistance
 - maintain alveolus open
 - overcome elastic recoil forces

Concept of Mechanical Ventilation

• Ventilators deliver gas to the lungs using positive

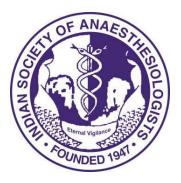

pressure at a certain *rate*.

• The amount of gas delivered can be *limited* by time,

pressure or volume.

• The duration can be <u>cycled</u> by time, pressure or flow.

Indications for Mechanical Ventilation



• The work of breathing usually accounts for 5% of oxygen consumption (V0₂).

• In the critically ill patient this may rise to 30%.

• Invasive mechanical ventilation eliminates the metabolic cost of breathing.

Indications for Mechanical Ventilation

Inadequate oxygenation (not corrected by suppl. O₂ by mask).

Inadequate ventilation (increased PaCO₂).

Retention of pulmonary secretions (bronchial toilet).

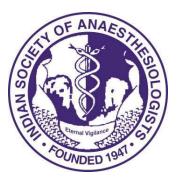

Airway protection (obtunded patient, depressed gag reflex).

Cardiac Insufficiency: *eliminate work of breathing reduce oxygen consumption*

Neurologic dysfunction:

central hypoventilation/frequent apnea patient comatose, GCS <u><</u> 8 inability to protect airway

Principles of Mechanical Ventilation

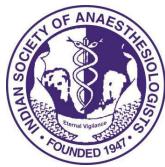


 Positive pressure ventilation involves delivering a mechanically generated 'breath' to get O₂ in and CO₂ out.

• Gas is pumped in during inspiration (Ti) and the patient passively expires during expiration (Te).

• The sum of Ti and Te is the respiratory cycle or 'breath'.

Basic Settings on the Ventilator



• Tidal Volume

Pressure controlled breath (15-20 cm H₂0) Volume controlled breath (500 mls) Rate (frequency) (10-12 breaths/minute)

- Positive end expiratory pressure (PEEP) (5 cm H₂0)
- FiO₂ (0.21-1)
- Peak airway pressure (PAP)

Standard Ventilator Settings MORITE

Mode

O₂

Respiratory Rate

Inspiratory Action

Inspiratory Time

Expiratory Action

Standard Ventilator Settings MORITE

Mode

O₂

Respiratory Rate

Inspiratory Action

Inspiratory Time

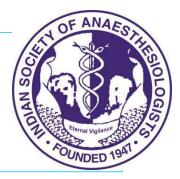
Expiratory Action

Be Aware

CMV, Volume Control

0.5 (50% 0₂)

12/minute

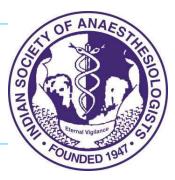

Set Vt at 500 mls

Set I:E ratio 1:2

Set PEEP at 5 cm H₂0

PAP ≤35 cm H_2O

Trigger


• How does the vent know when to give a breath?

"Trigger"

- patient effort
- elapsed time

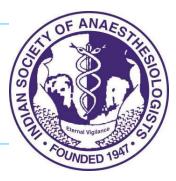
• The patient's effort can be "sensed" as a change in pressure or a change in flow (in the circuit)

Initial Settings

Pressure Limited

- FiO₂
- Rate
- I-time or I:E ratio
- PEEP
- PIP or PAP

●<u>Volume Limited</u>


- FiO₂
- Rate
- I-time or I:E ratio
- PEEP
- Tidal Volume

Initial Settings


- <u>Settings</u>
 - Rate: start with a rate that is somewhat normal; i.e., 12 for an adult,15 for adolescent/child, 20-30 for infant/small child
 - FiO₂: 100% and wean down
 - PEEP: 3-5
 - Control every breath (A/C) or some (SIMV)
 - Mode ?

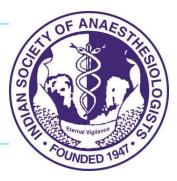
Nomenclature

- Airway Pressures
 - Peak Inspiratory Pressure (PIP)
 - Positive End Expiratory Pressure (PEEP)
 - Mean airway pressure (MAP)
 - Continuous Positive Airway Pressure (CPAP)
- Inspiratory Time or I:E ratio
- Tidal Volume: amount of gas delivered with each breath

Principles of Mechanical Ventilation

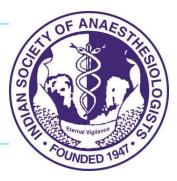
- Mechanically ventilated patients usually receive positive endexpiratory pressure (PEEP), to overcome the loss of physiological PEEP provided by the larynx and vocal cords.
- PEEP is delivered throughout the respiratory cycle synonymous to CPAP, but in the intubated patient.
- Standard PEEP setting is 5 cm H₂0 in adults
- Sedation- often required to prevent ventilator-patient asynchrony.

Principles of Mechanical Ventilation


- Why is the peak airway pressure (PAP) important?
- Ventilator Induced Lung Injury (VILI).

Mechanical ventilation is injurious to the lung.

• Aim PAP < 35 cm H_2 0


- Is it working ?
 - Look at the patient !!
 - Listen to the patient !!
 - Pulse Ox, ABG, EtCO₂
 - Chest X ray
 - Look at the vent (PIP; expired TV; alarms)

- When in doubt, DISCONNECT THE PATIENT FROM THE VENTILATOR, and begin bag ventilation.
- Ensure you are bagging with 100% O2.
- This eliminates the ventilator circuit as the source of the problem.
- Bagging by hand can also help you gauge patient's lung compliance

- Airway first: is the tube still in? (may need DL/EtCO₂ to confirm) Is it patent? Is it in the right position?
- Breathing next: is the chest rising? Breath sounds present and equal? Changes in exam? Atelectasis, bronchospasm, pneumothorax, pneumonia? (Consider needle thoracentesis)
- Circulation: shock? Sepsis?

- Well, it isn't working.....
 - Right settings ? Right Mode ?
 - Does the ventilator need to do more work ?
 - \circ Patient unable to do so
 - Underlying process worsening (or new problem?)
 - Air leaks?
 - Does the patient need to be more sedated ?
 - Does the patient need to be extubated ?
 - Ventilator is only human.....(is it working ?)

